Matrix
- A rectangular array of numbers having a fixed number of rows and columns
- $m \times n$ matrix consists of $m$ rows and $n$ columns
- Square matrix : #columns = #rows
- Row matrix : #rows = 1
- Column matrix : #columns = 1
- Vectors : row matrix or column matrix
- Scalar : 1 x 1 matrix
- Diagonal matrix : $a_{ij} = 0 \text{if} i \neq j$
- Identity matrix : $a_{ij} = 0 \text{if} i \neq j$ , $a_{ij} = 0 \text{if} i = j$
- Kronecker delta : $\delta_{ij} = 0 \text{if} i \neq j , 1 \text{if} i = j$
- Symmetric matrix : $a_{ij} = a_{ji}$
Matrix Computation
$A+B$, $A-B$, $kA$ : 각 원소별 계산
multiplication : #column of 1st matrix must equal to #row of 2nd matrix : conformable
$C = AB$
$A : l \times m, B : m times n \to C : l \times n$
$c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \cdots + a_{im} b_{mj}$
$AB \neq BA$
$AI = IA = A$
transpose of $A = A^T$, $a_{ij}^T = a_{ji}$
Orthogonal Matrix
$AA^T = I$ : A is an orthogonal matrix
Matrix Properties
$A+B = B+A$
$A+(B+C) = (A+B)+C$
$(AB)C = A(BC)$
$A(B+C) = AB + AC$
$(A+B)^T = A^T + B^T
$(kA)^T = kA^T
$(AB)^T = B^TA^T$
Determinants
- Defined in square matrices
- notation : $|A|$ or det(A)
- 1x1 matrix : $|A| = a_{11}$
- 2x2 matrix : $|A| = a_{11}a_{22} - a_{12}a_{21}$
-3x3 matrix
Minor of element $a_{ij} : |A_{ij}|$ : Obtained by deleting i th row and j th column
Cofactor of element $a_{ij} : c_{ij} = (-1)^{i+j} |A_{ij}|$
$|A_{11}|$ : 1 row, 1 column 을 제거한 행렬의 det
$|A| = \sum_{j=1}^n a_{ij} (-1)^{i+j} |A_{ij}| = \sum_{i=1}^n a_{ij} (-1)^{i+j} |A_{ij}|$ : i th row expansion, j th column expansion
Determinants Properties
$|A| = |A^T|
$|AB| = |A||B|$
$|B| = k|A|$, if we obtain $B$ by multiplying a constant $k$ to any one row( or column )
Interchanging any tw orows ( or columns ) of $A$ changes the sign of $|A|$
if two rwos (or columns) are identical, $|A| = 0$
Adding a multiple of one row (or column) to another row( or column ) does not change the determminant
Inverse Matrix
- Matrix arithmetic does not define division
- Inverse matrix do a similar process
$AA^{-1} = I$ -> $AX = B$ -> $A^{-1}AX = A^{-1}B$
$a_{ij}^{-1} = \frac{(-1)^{i+j}|A_{ij}|}{|A|} $
$A^{-1} : a_{ij}^{-1} $
- A^{-1} does not exist if $|A| = 0$
Gauss-Jordan Elimination
- To calculate inverse matrix
1. Construct n x 2n matrix by concatenating identity to the right of the n x n matrix
$A|I$
- Elementary row operation is one of the following operations that can be performed on a matrix
1. Excahnge two rows
2. Multiply a row by a nonzero scalr
3. Add a multiple of one row to another row
- Algorithm
1. Construct the augumented matrix [A I]
2. Repeat the followings for the column $j$ = from 1 to n
3. Find row $i$ with $i \geq j$ such that $a_{ij}$ has the largest absolute value. if no such row exists for which $a_{ij} \neq 0$, no inverse matrix exists
4. if $i \neq j$, exchange row $i$ and row $j$
5. Multiply row $j$ by $ \frac{1}{a_{ij}}$ => set $a_{jj}$ to 1
6. For each row $k$ where $1 \leq k \leq n$ and $k \neq j$, add $-a_{kj}$ times row $j$ to $row $k$ => set all element in column $j$ to 0 except the row $j$
Linear System
$AX = B $ -> $A^{-1}AX = A^{-1}B$ , $X = A^{-1}B$
- when no solution exists : $|A| = 0$
Homogeneous System
$AX = 0$
- if $|A| \neq 0$ , zero solution(or trivial solution) $AX = 0$
- if $|A| = 0$, non-zero solution (X \neq 0$ exists
Solving Linear System using Gauss-Jordan Ellimination ( $AX = B$, [A B])
Eigenvalues and Eigenvectors
- For an n x n matrix A, there exists non-zero column matrix(vector) X and scalar $\lambda$ such that $AX = \lambda X$
- $\lambda $ is called eigenvalue of $A$ and $X$ is called eigenvector that corresponds to that eigenvalue
$AX = \lambda X \to (A-\lambda I) X = 0$ : To have non-trivial solution, $X \neq 0$ in homogeneous system, the characteristic equation $|A - \lambda I| = 0$ should be satisfied
Diagonalization
- For n x n matrix A, we say P diagonalizes A if $P^{-1}AP$ is a diagonal matrix
- if n x n matrix A has eigenvalues $\lambda_1, \cdots, \lambda_n$ and there exists corresponding eigenvector $X_1, X_2, \cdots, X_n$ that form a linearly independent set, then $A$ can be diagonalized
P = [ $X_1$ $\cdots$ $X_n$ ], $X_1, \cdots, X_n$ are linaerly independent, P is invertible
$P^{-1}AP = \Lambda$
'학교수업 > 수치해석' 카테고리의 다른 글
[Numerical Analysis] 6. Rendering (0) | 2022.05.20 |
---|---|
[Numerical Analysis] 5. Surface (0) | 2022.05.20 |
[Numerical Analysis] 4. Curve (0) | 2022.05.20 |
[Numerical Analysis] 3. Transformation (0) | 2022.05.19 |
[Numerical Analysis] 1. Vector, Line, Plane (0) | 2022.05.19 |