Coordiante System
n-dimensional coordinate system : $ R^n = { ( a_1, a_2, \cdots , a_n ) | a_1, a_2, \cdots , a_n \in R } $
$A = (a_1, a_2, \cdots, a_n) $, $B = (b_1, b_2, \cdots, b_n)$
각 벡터끼리 합, 차, 상수배는 각 원소의 합, 차, 상수배이다.
벡터의 구성요소 : Length + Direction
$\vec{a} = (a_1, a_2, \cdots, a_n)$, $a = \begin{bmatrix} a_1 & a_2 & \cdots & a_n \\ \end{bmatrix} $
$\vec{a} = (3,4)$
length : $| \vec{a} | = \sqrt{3^2+4^2} = 5 $
direction : $\frac{\vec{a}}{|\vec{a}|} = (\frac{3}{5}, \frac{4}{5} $ (unit vector)
Free vector : Translation is allowed ( 움직여도 동일한 벡터로 취급. )
Fixed vector : Starting point is fixed (origin), translation is limited ( 시작점이 원점에 고정되고, 움직일 수 없음 )
Commutative law, Associative law, Distributive law 성립
Dot Product ( scalar product, inner product )
$ \vec{a} \cdot \vec{b} = a_1b_1 + a_2b_2 + \cdots + a_nb_n$
$ \vec{a} \cdot \vec{a} = |\vec{a}|^2 $
$\vec{a} \cdot \vec{b} = |\vec{a}|\vec{b}| \cos \theta $
$\vec{a} \cdot \vec{b} = 0 $, Perpendicular
Cross Product (vector product ) Only 3D vector!
$\vec{a} \times \vec{b} = \begin{pmatrix} a_2b_3=a_3b_2 & a_3b_1 - a_1b_3 & a_1b_2 - a_2b_1 \\ \end{pmatrix} $
$ \vec{c} = \vec{a} \times \vec{b} $ is Percendicular to $\vec{a}, \vec{b} $
$ \vec{a} \times \vec{b} = 0$, Parallel
$ \vec{a} \times \vec{b} = -(\vec{b} \times \vec{a}) \neq \vec{b} \times \vec{a} $
$| \vec{a} \times \vec{b} | = |\vec{a}||\vec{b}| \sin \theta $
- Direction follows right hand rule
Linear Independent
$ \vec{x_1}, \vec{x_2}, \cdots, \vec{x_n}$ is linearly independent,
iff $a_1 \vec{x_1} + a_2 \vec{x_2} + \cdots + a_n \vec{x_n} = 0$ only if $a_1, a_2, \cdots, a_n$ are all 0
if there is a solution that any of $a_1, a_2, \cdots, a_n$ is non-zero, linearly dependent
- at least one vector can be represented with a linear combination of other vector, linearly dependent
- Dimension of vectors : size of largest linearly independent set
Basis Vector : Linearly Independent
N-dimensional basis vector can make n-dimensional coordinate system
$\vec{a} = a \vec{e_1} + b \vec{e_2}$, Any point is represented by a linear combination of basis vector
Line
determine a unique line : two points, one point + one direction
$y = mx + b$, $m =\frac{y_2 - y_1}{x_2 - x_1} = \frac{y - y_1}{x - x_1} = \frac{y - y_2}{x - x_2} $
Parametric representation
$x = au + b$, $y = cu+d$, $u$ : independent variable
$u=0 \to x_1 = b, y_1 = d$, $u=1 \to x_2 = a+b = a + x_1, x_2 = c+d=c+y_1$
$ x = (x_2 - x_1)u + x_1, y = (y_2 - y_1) u + y_1$
$x - x_1 = (x_2 - x_1)u, y- y_1 = (y_2 - y_1)u$
$u = \frac{x-x_1}{x_2-x_1} = \frac{y-y_1}{y_2-y_1}$
Line in 3D
$x = a_x u + b_x, y = a_ u +b_y, z = a_zu+b_z$
Line segment
in parametric representation -> change $u$
Representing Lines in Vector
$\vec{x} = (x,y,z), \vec{a} = (a_x, a_y, a_z), \vec{b} = (b_x, b_y, b_z) \to \vec{x} = \vec{a} u + \vec{b}$ : vector addition
Line 위의 두점 $p_0, p_1$ 의 벡터 $\vec{p_1}, \vec{p_2}$ 에서 Line direction vector $ = \vec{p_1} - \vec{p_0}$
$ \vec{x} = \vec{p_0} + (\vec{p_1} - \vec{p_0}) u$
Point : $\vec{p_0} = (p_x, p_y, p_z)$
Line : \vec{x} = \vec{a} u + \vec{b}$
$u = \frac{x - b_x}{a_x} = \frac{y - b_y}{a_y} = \frac{z -b_z}{a_z}$
$u_x = \frac{p_x - b_x}{a_x}, u_y = \frac{p_y-b_y}{a_y}, u_z = \frac{p_z-b_z}{a_z}$
$u_x = u_y = u_z \to \vec{p_0}$ is on the line
Point and Line
$|u_x - u_y| < \epsilon \wedge |u_y - u_z| < \epsilon \wedge |u_z - u_x| < \epsilon$, $\epsilon << 1$
$f(x,y) = ax + by + c$,
$f(x_0, y_0) = 0 \to $ on line
$f(x_0, y_0), f(x_1, y_1)$ : same sign : same side
$f(x_0, y_0), f(x_1, y_1)$ : different sign : different side
Plane
determines a unique plane : Three non-collinear points, A point and a direction
$ax+by+cz+d = 0$ $c = 0 \to$ Line in 2D, but Place in 3D
$z = - \frac{d}{c}, a = b = 0$ : Place perpendicular with z axis
$d \neq 0$, $a' = \frac{a}{d} , b' = \frac{b}{d} , c' = \frac{c}{d}$ : 4 unknown -> 3 unknown
-> need 3 point
A Point and Two vector :
$\vec{x} = \vec{x_0} + u\vec{s} + w\vec{t}$
Three points :
$\vec{x} = \vec{x_0} + u(\vec{x_1} - \vec{x_0}) + w(\vec{x_2} - \vec{x_1})$
A Point and a Normal vector :
- Normal vector : perpendicular to any vector on the plane
$\vec{l_i} \cdot \vec{n} = 0 $
$(\vec{x} - \vec{x_0}) \cdot \vec{n} = \vec{x} \cdot \vec{n} - \vec{x_0}\cdot \vec{n} = 0 $
Normal Vector
- A vector perpendicular to the plane : $\vec{n} = \vec{s} \times \vec{t}$
- Unet normal Vector : $\hat{n} = \vec{n} / |\vec{n}|$
- $(\vec{x} - \vec{x_0}) \cdot \hat{n} = 0$
Points and Planes
$f(x,y,z) = ax+by+cz+d$, can compare sign and sides
Lines and Planes
line : $\vec{x} = \vec{a}u+\vec{b}$
plane : $(\vec{x} - \vec{x_0}) \cdot \vec{n} = 0$
(\vec{a}u + \vec{b} - \vec{x_0}) \cdot \vec{n} = 0$
$ u = =\frac{(\vec{b} - \vec{x_0}) \cdot \vec{n} }{\vec{a} \cdot \vec{n}} $
- $\vec{a} \cdot \vec{n} \neq 0 $ : Intersect at a point
- $\vec{a} \cdot \vec{n} = 0 $ : Parallel -> $(\vec{b} - \vec{x_0}) \cdot \vec{n} = 0$ : Line on the plane, $\neq$ : No intersection
'학교수업 > 수치해석' 카테고리의 다른 글
[Numerical Analysis] 6. Rendering (0) | 2022.05.20 |
---|---|
[Numerical Analysis] 5. Surface (0) | 2022.05.20 |
[Numerical Analysis] 4. Curve (0) | 2022.05.20 |
[Numerical Analysis] 3. Transformation (0) | 2022.05.19 |
[Numerical Analysis] 2. Matrix (0) | 2022.05.19 |