Loading [MathJax]/jax/output/CommonHTML/jax.js

학교수업/수치해석

[Numerical Analysis] 1. Vector, Line, Plane

hwijin97 2022. 5. 19. 15:57

 

Coordiante System


n-dimensional coordinate system : Rn=(a1,a2,,an)|a1,a2,,anR

A=(a1,a2,,an), B=(b1,b2,,bn)

각 벡터끼리 합, 차, 상수배는 각 원소의 합, 차, 상수배이다.

 

벡터의 구성요소 : Length + Direction

a=(a1,a2,,an), a=[a1a2an]

 

a=(3,4)

length : |a|=32+42=5

direction : a|a|=(35,45 (unit vector)

 

Free vector : Translation is allowed ( 움직여도 동일한 벡터로 취급. )

Fixed vector : Starting point is fixed (origin), translation is limited ( 시작점이 원점에 고정되고, 움직일 수 없음 )

 

Commutative law, Associative law, Distributive law 성립

 


Dot Product ( scalar product, inner product )

 

ab=a1b1+a2b2++anbn

aa=|a|2

ab=|a|b|cosθ

ab=0, Perpendicular

 

Cross Product (vector product ) Only 3D vector!

a×b=(a2b3=a3b2a3b1a1b3a1b2a2b1)

c=a×b is Percendicular to a,b

a×b=0, Parallel

a×b=(b×a)b×a 

|a×b|=|a||b|sinθ

- Direction follows right hand rule

 

Linear Independent

x1,x2,,xn is linearly independent,

iff a1x1+a2x2++anxn=0 only if a1,a2,,an are all 0

if there is a solution that any of a1,a2,,an is non-zero, linearly dependent

- at least one vector can be represented with a linear combination of other vector, linearly dependent

- Dimension of vectors : size of largest linearly independent set

 

 

Basis Vector : Linearly Independent

N-dimensional basis vector can make n-dimensional coordinate system

 

a=ae1+be2, Any point is represented by a linear combination of basis vector


Line

determine a unique line : two points, one point + one direction

y=mx+b, m=y2y1x2x1=yy1xx1=yy2xx2

 

Parametric representation

x=au+b, y=cu+d, u : independent variable

u=0x1=b,y1=d, u=1x2=a+b=a+x1,x2=c+d=c+y1

x=(x2x1)u+x1,y=(y2y1)u+y1

xx1=(x2x1)u,yy1=(y2y1)u

u=xx1x2x1=yy1y2y1

 

Line in 3D

x=axu+bx,y=au+by,z=azu+bz

 

Line segment

in parametric representation -> change u

 

Representing Lines in Vector

x=(x,y,z),a=(ax,ay,az),b=(bx,by,bz)x=au+b : vector addition

 

Line 위의 두점 p0,p1 의 벡터 p1,p2 에서 Line direction vector =p1p0

x=p0+(p1p0)u

 

Point : p0=(px,py,pz)

Line : \vec{x} = \vec{a} u + \vec{b}$

u=xbxax=ybyay=zbzaz

ux=pxbxax,uy=pybyay,uz=pzbzaz

ux=uy=uzp0 is on the line

 

Point and Line

|uxuy|<ϵ|uyuz|<ϵ|uzux|<ϵ, ϵ<<1

 

f(x,y)=ax+by+c,

f(x0,y0)=0 on line

f(x0,y0),f(x1,y1) : same sign : same side

f(x0,y0),f(x1,y1) : different sign : different side

 

 


Plane

determines a unique plane : Three non-collinear points, A point and a direction

ax+by+cz+d=0 c=0 Line in 2D, but Place in 3D

z=dc,a=b=0 : Place  perpendicular with z axis

 

d0, a=ad,b=bd,c=cd : 4 unknown -> 3 unknown

-> need 3 point

 

A Point and Two vector : 

x=x0+us+wt

 

Three points :

x=x0+u(x1x0)+w(x2x1)

 

A Point and a Normal vector :

- Normal vector : perpendicular to any vector on the plane

lin=0

(xx0)n=xnx0n=0

 

 

Normal Vector 

- A vector perpendicular to the plane : n=s×t

- Unet normal Vector : ˆn=n/|n|

- (xx0)ˆn=0

 

Points and Planes

f(x,y,z)=ax+by+cz+d, can compare sign and sides

 

Lines and Planes

line : x=au+b

plane : (xx0)n=0

 

(\vec{a}u + \vec{b} - \vec{x_0}) \cdot \vec{n} = 0$

u==(bx0)nan

- an0 : Intersect at a point

- an=0 : Parallel -> (bx0)n=0 : Line on the plane, : No intersection

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

'학교수업 > 수치해석' 카테고리의 다른 글

[Numerical Analysis] 6. Rendering  (0) 2022.05.20
[Numerical Analysis] 5. Surface  (0) 2022.05.20
[Numerical Analysis] 4. Curve  (0) 2022.05.20
[Numerical Analysis] 3. Transformation  (0) 2022.05.19
[Numerical Analysis] 2. Matrix  (0) 2022.05.19