Coordiante System
n-dimensional coordinate system : Rn=(a1,a2,⋯,an)|a1,a2,⋯,an∈R
A=(a1,a2,⋯,an), B=(b1,b2,⋯,bn)
각 벡터끼리 합, 차, 상수배는 각 원소의 합, 차, 상수배이다.
벡터의 구성요소 : Length + Direction
→a=(a1,a2,⋯,an), a=[a1a2⋯an]
→a=(3,4)
length : |→a|=√32+42=5
direction : →a|→a|=(35,45 (unit vector)
Free vector : Translation is allowed ( 움직여도 동일한 벡터로 취급. )
Fixed vector : Starting point is fixed (origin), translation is limited ( 시작점이 원점에 고정되고, 움직일 수 없음 )
Commutative law, Associative law, Distributive law 성립
Dot Product ( scalar product, inner product )
→a⋅→b=a1b1+a2b2+⋯+anbn
→a⋅→a=|→a|2
→a⋅→b=|→a|→b|cosθ
→a⋅→b=0, Perpendicular
Cross Product (vector product ) Only 3D vector!
→a×→b=(a2b3=a3b2a3b1−a1b3a1b2−a2b1)
→c=→a×→b is Percendicular to →a,→b
→a×→b=0, Parallel
→a×→b=−(→b×→a)≠→b×→a
|→a×→b|=|→a||→b|sinθ
- Direction follows right hand rule
Linear Independent
→x1,→x2,⋯,→xn is linearly independent,
iff a1→x1+a2→x2+⋯+an→xn=0 only if a1,a2,⋯,an are all 0
if there is a solution that any of a1,a2,⋯,an is non-zero, linearly dependent
- at least one vector can be represented with a linear combination of other vector, linearly dependent
- Dimension of vectors : size of largest linearly independent set
Basis Vector : Linearly Independent
N-dimensional basis vector can make n-dimensional coordinate system
→a=a→e1+b→e2, Any point is represented by a linear combination of basis vector
Line
determine a unique line : two points, one point + one direction
y=mx+b, m=y2−y1x2−x1=y−y1x−x1=y−y2x−x2
Parametric representation
x=au+b, y=cu+d, u : independent variable
u=0→x1=b,y1=d, u=1→x2=a+b=a+x1,x2=c+d=c+y1
x=(x2−x1)u+x1,y=(y2−y1)u+y1
x−x1=(x2−x1)u,y−y1=(y2−y1)u
u=x−x1x2−x1=y−y1y2−y1
Line in 3D
x=axu+bx,y=au+by,z=azu+bz
Line segment
in parametric representation -> change u
Representing Lines in Vector
→x=(x,y,z),→a=(ax,ay,az),→b=(bx,by,bz)→→x=→au+→b : vector addition
Line 위의 두점 p0,p1 의 벡터 →p1,→p2 에서 Line direction vector =→p1−→p0
→x=→p0+(→p1−→p0)u
Point : →p0=(px,py,pz)
Line : \vec{x} = \vec{a} u + \vec{b}$
u=x−bxax=y−byay=z−bzaz
ux=px−bxax,uy=py−byay,uz=pz−bzaz
ux=uy=uz→→p0 is on the line
Point and Line
|ux−uy|<ϵ∧|uy−uz|<ϵ∧|uz−ux|<ϵ, ϵ<<1
f(x,y)=ax+by+c,
f(x0,y0)=0→ on line
f(x0,y0),f(x1,y1) : same sign : same side
f(x0,y0),f(x1,y1) : different sign : different side
Plane
determines a unique plane : Three non-collinear points, A point and a direction
ax+by+cz+d=0 c=0→ Line in 2D, but Place in 3D
z=−dc,a=b=0 : Place perpendicular with z axis
d≠0, a′=ad,b′=bd,c′=cd : 4 unknown -> 3 unknown
-> need 3 point
A Point and Two vector :
→x=→x0+u→s+w→t
Three points :
→x=→x0+u(→x1−→x0)+w(→x2−→x1)
A Point and a Normal vector :
- Normal vector : perpendicular to any vector on the plane
→li⋅→n=0
(→x−→x0)⋅→n=→x⋅→n−→x0⋅→n=0
Normal Vector
- A vector perpendicular to the plane : →n=→s×→t
- Unet normal Vector : ˆn=→n/|→n|
- (→x−→x0)⋅ˆn=0
Points and Planes
f(x,y,z)=ax+by+cz+d, can compare sign and sides
Lines and Planes
line : →x=→au+→b
plane : (→x−→x0)⋅→n=0
(\vec{a}u + \vec{b} - \vec{x_0}) \cdot \vec{n} = 0$
u==(→b−→x0)⋅→n→a⋅→n
- →a⋅→n≠0 : Intersect at a point
- →a⋅→n=0 : Parallel -> (→b−→x0)⋅→n=0 : Line on the plane, ≠ : No intersection
'학교수업 > 수치해석' 카테고리의 다른 글
[Numerical Analysis] 6. Rendering (0) | 2022.05.20 |
---|---|
[Numerical Analysis] 5. Surface (0) | 2022.05.20 |
[Numerical Analysis] 4. Curve (0) | 2022.05.20 |
[Numerical Analysis] 3. Transformation (0) | 2022.05.19 |
[Numerical Analysis] 2. Matrix (0) | 2022.05.19 |